skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Niraj Thapa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Protein succinylation has recently emerged as an important and common post-translation modification (PTM) that occurs on lysine residues. Succinylation is notable both in its size (e.g., at 100 Da, it is one of the larger chemical PTMs) and in its ability to modify the net charge of the modified lysine residue from + 1 to − 1 at physiological pH. The gross local changes that occur in proteins upon succinylation have been shown to correspond with changes in gene activity and to be perturbed by defects in the citric acid cycle. These observations, together with the fact that succinate is generated as a metabolic intermediate during cellular respiration, have led to suggestions that protein succinylation may play a role in the interaction between cellular metabolism and important cellular functions. For instance, succinylation likely represents an important aspect of genomic regulation and repair and may have important consequences in the etiology of a number of disease states. In this study, we developed DeepSuccinylSite, a novel prediction tool that uses deep learning methodology along with embedding to identify succinylation sites in proteins based on their primary structure. 
    more » « less
  2. Methylation, which is one of the most prominent post-translational modifications on proteins, regulates many important cellular functions. Though several model-based methylation site predictors have been reported, all existing methods employ machine learning strategies, such as support vector machines and random forest, to predict sites of methylation based on a set of “hand-selected” features. As a consequence, the subsequent models may be biased toward one set of features. Moreover, due to the large number of features, model development can often be computationally expensive. In this paper, we propose an alternative approach based on deep learning to predict arginine methylation sites. Our model, which we termed DeepRMethylSite, is computationally less expensive than traditional feature-based methods while eliminating potential biases that can arise through features selection. Based on independent testing on our dataset, DeepRMethylSite achieved efficiency scores of 68%, 82% and 0.51 with respect to sensitivity (SN), specificity (SP) and Matthew's correlation coefficient (MCC), respectively. Importantly, in side-by-side comparisons with other state-of-the-art methylation site predictors, our method performs on par or better in all scoring metrics tested. 
    more » « less